题解:强连通锁点之后。 就成了一副单向图。 然后对于每个点 找到 后面合法的点的最大值就好了。 合法就是后面的那个点可以走到n号点。
也可以正向跑一遍dij 求出到这个点的最小花费。 然后在反向跑dij跑出n到这个点的最大花费,然后枚举每个点。
代码:
#includeusing namespace std;#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);#define LL long long#define ULL unsigned LL#define fi first#define se second#define pb push_back#define lson l,m,rt<<1#define rson m+1,r,rt<<1|1#define lch(x) tr[x].son[0]#define rch(x) tr[x].son[1]#define max3(a,b,c) max(a,max(b,c))#define min3(a,b,c) min(a,min(b,c))typedef pair pll;const int inf = 0x3f3f3f3f;const int _inf = 0xc0c0c0c0;const LL INF = 0x3f3f3f3f3f3f3f3f;const LL _INF = 0xc0c0c0c0c0c0c0c0;const LL mod = (int)1e9+7;const int N = 1e5 + 100;const int M = 1e6 + 100;int head[N], to[M], nt[M], tot = 0;int a[N];vector vc[N];void add(int u, int v){ to[tot] = v; nt[tot] = head[u]; head[u] = tot++;}int n, m, u, v, op;int belong[N], dfn[N], low[N], now_time, scc_cnt;int mx[N], mn[N], ret[N];stack s;void dfs(int u){ dfn[u] = low[u] = ++now_time; s.push(u); for(int i = head[u]; ~i; i = nt[i]){ if(!dfn[to[i]]) dfs(to[i]); if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]); } if(dfn[u] == low[u]){ ++scc_cnt; int now; while(1){ now = s.top(); s.pop(); belong[now] = scc_cnt; if(now == u) break; } }}void scc(int n){ now_time = scc_cnt = 0; for(int i = 1; i <= n; ++i) if(!belong[i]) dfs(i); int v; for(int i = 1; i <= n; ++i){ for(int j = head[i]; ~j; j=nt[j]){ v = to[j]; if(belong[v] != belong[i]){ vc[belong[i]].pb(belong[v]); } } } for(int i = 1; i <= n; ++i){ int rt = belong[i]; if(ret[rt] == 0){ ret[rt] = -1; mn[rt] = a[i]; mx[rt] = a[i]; } else { mn[rt] = min(mn[rt], a[i]); mx[rt] = max(mx[rt], a[i]); } }}int ans = 0;int solve(int x){ if(ret[x] != -1) return mx[x]; ret[x] = 0; int mmax = -1; if(x == belong[n]) mmax = mx[x]; for(int v : vc[x]){ mmax = max(solve(v), mmax); } if(mmax != -1) { mx[x] = max(mx[x], mmax); ans = max(ans, mx[x]-mn[x]); } else mx[x] = -1; return mx[x];}int main(){ memset(head, -1, sizeof(head)); scanf("%d%d", &n, &m); for(int i = 1; i <= n; ++i) scanf("%d", &a[i]); for(int i = 1; i <= m; ++i){ scanf("%d%d%d", &u, &v, &op); add(u, v); if(op == 2) add(v, u); } scc(n); solve(belong[1]); cout << ans << endl; return 0;}